Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Commun Biol ; 7(1): 520, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698168

RESUMEN

The sulco-gyral pattern is a qualitative feature of the cortical anatomy that is determined in utero, stable throughout lifespan and linked to brain function. The intraparietal sulcus (IPS) is a nodal associative brain area, but the relation between its morphology and cognition is largely unknown. By labelling the left and right IPS of 390 healthy participants into two patterns, according to the presence or absence of a sulcus interruption, here we demonstrate a strong association between the morphology of the right IPS and performance on memory and language tasks. We interpret the results as a morphological advantage of a sulcus interruption, probably due to the underlying white matter organization. The right-hemisphere specificity of this effect emphasizes the neurodevelopmental and plastic role of sulcus morphology in cognition prior to lateralisation processes. The results highlight a promising area of investigation on the relationship between cognitive performance, sulco-gyral pattern and white matter bundles.


Asunto(s)
Lenguaje , Imagen por Resonancia Magnética , Memoria , Lóbulo Parietal , Humanos , Lóbulo Parietal/fisiología , Lóbulo Parietal/anatomía & histología , Femenino , Masculino , Adulto , Memoria/fisiología , Adulto Joven , Individualidad , Cognición/fisiología , Adolescente , Persona de Mediana Edad , Sustancia Blanca/fisiología , Sustancia Blanca/anatomía & histología , Sustancia Blanca/diagnóstico por imagen
2.
Biomedicines ; 12(5)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38790917

RESUMEN

State-dependent non-invasive brain stimulation (NIBS) informed by electroencephalography (EEG) has contributed to the understanding of NIBS inter-subject and inter-session variability. While these approaches focus on local EEG characteristics, it is acknowledged that the brain exhibits an intrinsic long-range dynamic organization in networks. This proof-of-concept study explores whether EEG connectivity of the primary motor cortex (M1) in the pre-stimulation period aligns with the Motor Network (MN) and how the MN state affects responses to the transcranial magnetic stimulation (TMS) of M1. One thousand suprathreshold TMS pulses were delivered to the left M1 in eight subjects at rest, with simultaneous EEG. Motor-evoked potentials (MEPs) were measured from the right hand. The source space functional connectivity of the left M1 to the whole brain was assessed using the imaginary part of the phase locking value at the frequency of the sensorimotor µ-rhythm in a 1 s window before the pulse. Group-level connectivity revealed functional links between the left M1, left supplementary motor area, and right M1. Also, pulses delivered at high MN connectivity states result in a greater MEP amplitude compared to low connectivity states. At the single-subject level, this relation is more highly expressed in subjects that feature an overall high cortico-spinal excitability. In conclusion, this study paves the way for MN connectivity-based NIBS.

5.
Alzheimers Dement (N Y) ; 9(4): e12436, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38053753

RESUMEN

Introduction: Accumulating evidence indicates that the amygdala exhibits early signs of Alzheimer's disease (AD) pathology. However, it is still unknown whether the atrophy of distinct subfields of the amygdala also participates in the transition from healthy cognition to mild cognitive impairment (MCI). Methods: Our sample was derived from the AD Neuroimaging Initiative 3 and consisted of 97 cognitively healthy (HC) individuals, sorted into two groups based on their clinical follow-up: 75 who remained stable (s-HC) and 22 who converted to MCI within 48 months (c-HC). Anatomical magnetic resonance (MR) images were analyzed using a semi-automatic approach that combines probabilistic methods and a priori information from ex vivo MR images and histology to segment and obtain quantitative structural metrics for different amygdala subfields in each participant. Spearman's correlations were performed between MR measures and baseline and longitudinal neuropsychological measures. We also included anatomical measurements of the whole amygdala, the hippocampus, a key target of AD-related pathology, and the whole cortical thickness as a test of spatial specificity. Results: Compared with s-HC individuals, c-HC subjects showed a reduced right amygdala volume, whereas no significant difference was observed for hippocampal volumes or changes in cortical thickness. In the amygdala subfields, we observed selected atrophy patterns in the basolateral nuclear complex, anterior amygdala area, and transitional area. Macro-structural alterations in these subfields correlated with variations of global indices of cognitive performance (measured at baseline and the 48-month follow-up), suggesting that amygdala changes shape the cognitive progression to MCI. Discussion: Our results provide anatomical evidence for the early involvement of the amygdala in the preclinical stages of AD. Highlights: Amygdala's atrophy marks elderly progression to mild cognitive impairment (MCI).Amygdala's was observed within the basolateral and amygdaloid complexes.Macro-structural alterations were associated with cognitive decline.No atrophy was found in the hippocampus and cortex.

6.
Front Hum Neurosci ; 17: 1250096, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37841074

RESUMEN

Neuroimaging studies conducted in the last three decades have distinguished two frontoparietal networks responsible for the control of visuospatial attention. The present review summarizes recent findings on the neurophysiological mechanisms implemented in both networks and describes the evolution from a model centered on the distinction between top-down and bottom-up attention to a model that emphasizes the dynamic interplay between the two networks based on attentional demands. The role of the dorsal attention network (DAN) in attentional orienting, by boosting behavioral performance, has been investigated with multiple experimental approaches. This research effort allowed us to trace a distinction between DAN regions involved in shifting vs. maintenance of attention, gather evidence for the modulatory influence exerted by the DAN over sensory cortices, and identify the electrophysiological correlates of the orienting function. Simultaneously, other studies have contributed to reframing our understanding of the functions of the ventral attention network (VAN) and its relevance for behavior. The VAN is not simply involved in bottom-up attentional capture but interacts with the DAN during reorienting to behaviorally relevant targets, exhibiting a general resetting function. Further studies have confirmed the selective rightward asymmetry of the VAN, proposed a functional dissociation along the anteroposterior axis, and suggested hypotheses about its emergence during the evolution of the primate brain. Finally, novel models of network interactions explain the expression of complex attentional functions and the emergence and restorations of symptoms characterizing unilateral spatial neglect. These latter studies emphasize the importance of considering patterns of network interactions for understanding the consequences of brain lesions.

7.
Front Syst Neurosci ; 17: 1163147, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37205053

RESUMEN

Previous studies indicated that spatial neglect is characterized by widespread alteration of resting-state functional connectivity and changes in the functional topology of large-scale brain systems. However, whether such network modulations exhibit temporal fluctuations related to spatial neglect is still largely unknown. This study investigated the association between brain states and spatial neglect after the onset of focal brain lesions. A cohort of right-hemisphere stroke patients (n = 20) underwent neuropsychological assessment of neglect as well as structural and resting-state functional MRI sessions within 2 weeks from stroke onset. Brain states were identified using dynamic functional connectivity as estimated by the sliding window approach followed by clustering of seven resting state networks. The networks included visual, dorsal attention, sensorimotor, cingulo-opercular, language, fronto-parietal, and default mode networks. The analyses on the whole cohort of patients, i.e., with and without neglect, identified two distinct brain states characterized by different degrees of brain modularity and system segregation. Compared to non-neglect patients, neglect subjects spent more time in less modular and segregated state characterized by weak intra-network coupling and sparse inter-network interactions. By contrast, patients without neglect dwelt mainly in more modular and segregated states, which displayed robust intra-network connectivity and anti-correlations among task-positive and task-negative systems. Notably, correlational analyses indicated that patients exhibiting more severe neglect spent more time and dwelt more often in the state featuring low brain modularity and system segregation and vice versa. Furthermore, separate analyses on neglect vs. non-neglect patients yielded two distinct brain states for each sub-cohort. A state featuring widespread strong connections within and between networks and low modularity and system segregation was detected only in the neglect group. Such a connectivity profile blurred the distinction among functional systems. Finally, a state exhibiting a clear separation among modules with strong positive intra-network and negative inter-network connectivity was found only in the non-neglect group. Overall, our results indicate that stroke yielding spatial attention deficits affects the time-varying properties of functional interactions among large-scale networks. These findings provide further insights into the pathophysiology of spatial neglect and its treatment.

8.
Sci Rep ; 13(1): 6218, 2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-37069425

RESUMEN

Neuroimaging studies associate specific functional roles to distinct brain regions investigating separate cognitive processes using dedicated tasks. For example, using both correlative (i.e., fMRI) and causal (i.e., TMS) approaches it has been shown the involvement of intra-parietal sulcus (IPS), as part of the dorsal attention network, in spatial attentional tasks as well as the importance of the angular gyrus (AG), as part of the default mode network, during the selection of relevant information in semantic memory. Nonetheless, in our daily life attention and semantic memory are rarely needed in isolation. In the present TMS study we investigate how the brain combines attentional and semantic memory demands in a single task. Results showed that, compared to a pseudo-TMS, stimulation of IPS, but not AG, affects behavioral performance, thus suggesting its preponderant role in such a combined task. Moreover, the lack of difference between the effect of IPS and AG stimulations seems to suggest that the two regions may be coactivated or that a third-party source might indirectly mediate the interaction between the two networks.


Asunto(s)
Semántica , Estimulación Magnética Transcraneal , Estimulación Magnética Transcraneal/métodos , Lóbulo Parietal/fisiología , Memoria/fisiología , Encéfalo/fisiología , Mapeo Encefálico , Imagen por Resonancia Magnética
9.
Brain Connect ; 13(8): 473-486, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-34269620

RESUMEN

Background/Purpose: To identify brain hubs that are behaviorally relevant for neglect after stroke as well as to characterize their functional architecture of communication. Methods: Twenty acute right hemisphere damaged patients underwent neuropsychological and resting-state functional magnetic resonance imaging sessions. Spatial neglect was assessed by means of the Center of Cancellation on the Bells Cancellation Test. For each patient, resting-state functional connectivity matrices were derived by adopting a brain parcellation scheme consisting of 153 nodes. For every node, we extracted its betweenness centrality (BC) defined as the portion of all shortest paths in the connectome involving such node. Then, neglect hubs were identified as those regions showing a high correlation between their BC and neglect scores. Results: A first set of neglect hubs was identified in multiple systems including dorsal attention and ventral attention, default mode, and frontoparietal executive-control networks within the damaged hemisphere as well as in the posterior and anterior cingulate cortex. Such cortical regions exhibited a loss of BC and increased (i.e., less efficient) weighted shortest path length (WSPL) related to severe neglect. Conversely, a second group of neglect hubs found in visual and motor networks, in the undamaged hemisphere, exhibited a pathological increase of BC and reduction of WSPL associated with severe neglect. Conclusion: The topological reorganization of the brain in neglect patients might reflect a maladaptive shift in processing spatial information from higher level associative-control systems to lower level visual and sensory-motor processing areas after a right hemisphere lesion.


Asunto(s)
Conectoma , Trastornos de la Percepción , Accidente Cerebrovascular , Humanos , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/diagnóstico por imagen , Trastornos de la Percepción/etiología , Trastornos de la Percepción/complicaciones , Mapeo Encefálico
10.
Brain Connect ; 13(8): 464-472, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36128806

RESUMEN

Background/Purpose: To investigate the association between the degree of spatial neglect and the changes of brain system segregation (SyS; i.e., the ratio of the extent to which brain networks interact internally and with each other) after stroke. Methods: A cohort of 20 patients with right hemisphere lesion was submitted to neuropsychological assessment as well as to resting-state functional magnetic resonance imaging session at acute stage after stroke. The severity of spatial neglect was quantified using the Center of Cancellation (CoC) scores of the Bells cancellation test. For each patient, resting-state functional connectivity (FC) matrices were assessed by implementing a brain parcellation of nine networks that included the visual network, dorsal attention network (DAN), ventral attention network (VAN), sensorimotor network (SMN), auditory network, cingulo-opercular network, language network, frontoparietal network, and default mode network (DMN). For each patient and each network, we then computed the SyS derived by subtracting the between-network FC from the within-network FC (normalized by the within-network FC). Finally, for each network, the CoC scores were correlated with the SyS. Results: The correlational analyses indicated a negative association between CoC and SyS in the DAN, VAN, SMN, and DMN (q < 0.05 false discovery rate [FDR]-corrected). Patients with more severe spatial neglect exhibited lower SyS and vice versa. Conclusion: The loss of segregation in multiple and specific networks provides a functional framework for the deficits in spatial and nonspatial attention and motor/exploratory ability observed in neglect patients.

11.
High Alt Med Biol ; 23(1): 57-68, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35104160

RESUMEN

Committeri Giorgia, Danilo Bondi, Carlo Sestieri, Ginevra Di Matteo, Claudia Piervincenzi, Christian Doria, Roberto Ruffini, Antonello Baldassarre, Tiziana Pietrangelo, Rosamaria Sepe, Riccardo Navarra, Piero Chiacchiaretta, Antonio Ferretti, and Vittore Verratti. Neuropsychological and neuroimaging correlates of high-altitude hypoxia trekking during the "Gokyo Khumbu/Ama Dablam" expedition. High Alt Med Biol. 23:57-68, 2022. Background: Altitude hypoxia exposure may produce cognitive detrimental adaptations and damage to the brain. We aimed at investigating the effects of trekking and hypoxia on neuropsychological and neuroimaging measures. Methods: We recruited two balanced groups of healthy adults, trekkers (n = 12, 6 F and 6 M, trekking in altitude hypoxia) and controls (gender- and age-matched), who were tested before (baseline), during (5,000 m, after 9 days of trekking), and after the expedition for state anxiety, depression, verbal fluency, verbal short-term memory, and working memory. Personality and trait anxiety were also assessed at a baseline level. Neuroimaging measures of cerebral perfusion (arterial spin labeling), white-matter microstructural integrity (diffusion tensor imaging), and resting-state functional connectivity (functional magnetic resonance imaging) were assessed before and after the expedition in the group of trekkers. Results: At baseline, the trekkers showed lower trait anxiety (p = 0.003) and conscientiousness (p = 0.03) than the control group. State anxiety was lower in the trekkers throughout the study (p < 0.001), and state anxiety and depression decreased at the end of the study in both groups (p = 0.043 and p = 0.007, respectively). Verbal fluency increased at the end of the study in both groups (p < 0.001), whereas verbal short-term memory and working memory performance did not change. No significant differences between before and after the expedition were found for neuroimaging measures. Conclusions: We argue that the observed differences in the neuropsychological measures mainly reflect aspecific familiarity and learning effects due to the repeated execution of the same questionnaires and task. The present results thus suggest that detrimental effects on neuropsychological and neuroimaging measures do not necessarily occur as a consequence of short-term exposure to altitude hypoxia up to 5,000 m, especially in the absence of altitude sickness.


Asunto(s)
Mal de Altura , Expediciones , Montañismo , Adaptación Fisiológica , Adulto , Altitud , Mal de Altura/diagnóstico por imagen , Imagen de Difusión Tensora , Humanos , Hipoxia/diagnóstico por imagen
12.
Case Rep Neurol ; 13(3): 677-686, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34899252

RESUMEN

In the present case report, we investigated the cortical networks of a patient (DDA) affected by right parietal stroke who showed a constructional phenomenon, in which when coping and recalling from memory a complex figure, the model was reproduced rotated of 90° along the vertical axis. Previous studies suggested that rotation on copy is associated with visuospatial impairments and abnormalities in parietal cortex, whereas rotation on recall might be related to executive deficits and dysfunction of frontal regions. Here, we computed the DDA's resting-state functional connectivity (FC) derived from cortical regions of the dorsal attention (DAN) and the frontal portion of the executive-control network (fECN), which are involved in the control of visuospatial attention and multiple executive functions, respectively. We observed that, as compared to a control group of right stroke patients without drawing rotation, DDA exhibited selective increased FC of the DAN and fECN, but not of task-irrelevant language network, within the undamaged hemisphere. These patterns might reflect a pathological communication in such networks leading to impaired attentional and executive operations required to reproduce the model in the correct orientation. Notably, such enhancement of FC was not detected in a patient with a comparable neuropsychological profile as DDA, yet without rotated drawing, suggesting that network-specific modulations in DDA might be ascribed to the constructional phenomenon of rotated drawing.

13.
Neuroimage ; 238: 118239, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34119637

RESUMEN

Learning through intensive practice has been largely observed in motor, sensory and higher-order cognitive processing. Neuroimaging studies have shown that learning phases are associated with different patterns of functional and structural neural plasticity in spatially distributed brain systems. Yet, it is unknown whether distinct neural signatures before practice can foster different subsequent learning stages over time. Here, we employed a bimanual implicit sequence reaction time task (SRTT) to investigate whether the rates of early (one day after practice) and late (one month after practice) post-training motor skill learning were predicted by distinct patterns of pre-training resting state functional connectivity (rs-FC), recorded with functional MRI. We observed that both motor learning descriptors were positively correlated with the strength of rs-FC among pairs of regions within a SRTT-relevant network comprising cerebellar as well as cortical and subcortical motor areas. Crucially, we detected a double dissociation such that early post-training learning was significantly associated with the functional connections within cerebellar regions, whereas late post-training learning was significantly related to the functional connections between cortical and subcortical motor areas. These findings indicate that spontaneous brain activity prospectively carries out behaviorally relevant information to perform experience-dependent cognitive operations far distant in time.


Asunto(s)
Mapeo Encefálico/métodos , Cerebelo/fisiología , Imagen por Resonancia Magnética/métodos , Destreza Motora/fisiología , Tiempo de Reacción/fisiología , Conectoma , Mano , Humanos , Aprendizaje/fisiología , Estimulación Luminosa , Desempeño Psicomotor/fisiología , Descanso/fisiología
14.
Cortex ; 138: 302-310, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33774580

RESUMEN

Electrophysiological (EEG) correlates both at time (i.e., event-related potentials, ERP) and frequency (i.e., event-related desynchronization, ERD) domains have been shown to be modulated by external magnetic interference. Parallel studies reported a similar interference also for the EEG microstate at rest and in the period that anticipates a task. Here we investigated whether such interference was prolonged during the evoked activity in the framework of the semantic decision task. To this aim, rTMS was delivered over a core region of both the Default mode network and the language network (i.e., left angular gyrus, AG), previously associated to the current task, and as active control we stimulated the left IPS. When subjects received a non-active stimulation (i.e., Sham), in the period that follows the target onset (i.e., 2 sec after the rTMS) we found an interesting alternation of two dominant microstates (MS1, MS3), previously associated to the phonological network and the Cingulo-Opercular Network (CON), respectively. This dynamic was not altered when TMS was delivered over the left IPS. On the contrary, rTMS over left AG selectively suppressed the phonological-related microstate. These findings provide the first causal evidence of region specificity of the EEG microstates topography during the evoked activity corroborating the idea of a crucial role of AG in the semantic memory. Moreover, the present results might provide insight for understanding the neurophysiological correlates of language disorders e.g., aphasia as well as for planning non-invasive brain stimulation protocols for the rehabilitation.


Asunto(s)
Electroencefalografía , Estimulación Magnética Transcraneal , Potenciales Evocados , Humanos , Lóbulo Parietal , Semántica
15.
Neuroimage ; 204: 116257, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31604123

RESUMEN

Individuals are able to improve their visual skill with practice, a phenomenon called Visual Perceptual Learning (VPL). We previously observed that after training on a difficult shape identification task, the dorsal visual regions (i.e. right V2d/V3 and right lateral occipital, LO) corresponding to the trained visual quadrant, and their homologous in the opposite hemisphere, exhibited a selective activation at the end of the learning. By contrast, such modulation was not observed in the ventral visual regions, corresponding to the untrained quadrants. The causal role of the trained visual cortex was previously showed in a TMS study as its inactivation impaired behavioral performance to learned stimuli. Here, using the same experimental design, we employed TMS over the homologous of the trained area (i.e. left V2d/V3) as well as over the untrained region (i.e. right V4) to causally map the visual network during the perceptual learning. We report a decrease of accuracy after TMS over left V2d/V3 as compared to both right V4 and Sham (inactive stimulation) conditions. Importantly, TMS effect was correlated with the degree of learning, such that subjects with lower accuracy at the end of the training exhibited stronger TMS impairment. These results provide evidence that segregated regions within the visual network are causally involved in visual perceptual learning.


Asunto(s)
Mapeo Encefálico , Red Nerviosa/fisiología , Reconocimiento Visual de Modelos/fisiología , Práctica Psicológica , Estimulación Magnética Transcraneal , Corteza Visual/fisiología , Adulto , Femenino , Humanos , Masculino , Placebos , Adulto Joven
16.
Neurology ; 92(2): e125-e135, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30518552

RESUMEN

OBJECTIVE: To investigate whether different language deficits are distinguished by the relative strengths of their association with the functional connectivity (FC) at rest of the language network (LN) and cingulo-opercular network (CON) after aphasic stroke. METHODS: In a group of patients with acute stroke and left-hemisphere damage, we identified 3 distinct, yet correlated, clusters of deficits including comprehension/lexical semantic, grapheme-phoneme knowledge, and verbal executive functions. We computed partial correlations in which the contributions of a behavioral cluster and network FC of no interest were statistically regressed out. RESULTS: We observed a double dissociation such that impairment of grapheme-phoneme knowledge was more associated with lower FC of the LN within the left hemisphere than lower FC of the CON, whereas verbal executive deficits were more related to lower FC of the CON than the LN in the left hemisphere. Furthermore, the specific association between language deficits and FC was independent of the amount of structural damage to the LN and CON. CONCLUSION: These findings indicate that after a left-hemisphere lesion, the type of language impairment is related to the abnormal pattern of correlated activity in different networks. Accordingly, they extend the concept of a neuropsychological double dissociation from structural damage to functional network abnormalities. Finally, current results strongly argue in favor of the behavioral specificity of intrinsic brain activity after focal structural damage.


Asunto(s)
Afasia/diagnóstico por imagen , Afasia/etiología , Mapeo Encefálico , Encéfalo/diagnóstico por imagen , Vías Nerviosas/diagnóstico por imagen , Accidente Cerebrovascular/complicaciones , Adulto , Anciano , Anciano de 80 o más Años , Encéfalo/fisiopatología , Comprensión , Femenino , Lateralidad Funcional , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Vías Nerviosas/fisiopatología , Oxígeno/sangre , Descanso , Semántica , Accidente Cerebrovascular/diagnóstico por imagen , Adulto Joven
17.
Sci Rep ; 7(1): 2372, 2017 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-28539601

RESUMEN

The mean amplitude of the EEG alpha (8-12 Hz) power de-synchronization (ERD) is a robust electrophysiological correlate of task anticipation. Furthermore, in paradigms using a fixed period between warning and target stimuli, such alpha de-synchronization tends to increase and to peak just before target presentation. Previous studies from our group showed that the anticipatory alpha ERD can be modulated when magnetic stimulation is delivered over specific cortical regions during a variety of cognitive tasks. In this study we investigate the temporal dynamics of the anticipatory alpha ERD and test whether the magnetic stimulation produces either a general attenuation or an interruption of the typical development of alpha ERD. We report that, during a semantic decision task, rTMS over left AG, a region previously associated to semantic memory retrieval, shortened the peak latency and decreased the peak amplitude of the anticipatory alpha de-synchronization as compared to both active (left IPS) and non-active (Sham) TMS conditions. These results, while supporting the causal role of the left AG in the anticipation of a semantic decision task, suggest that magnetic interference not simply reduces the mean amplitude of anticipatory alpha ERD but also interrupts its typical temporal evolution in paradigms employing fixed cue-target intervals.


Asunto(s)
Ritmo alfa/fisiología , Toma de Decisiones/fisiología , Desempeño Psicomotor/fisiología , Semántica , Estimulación Magnética Transcraneal/métodos , Adulto , Mapeo Encefálico , Femenino , Humanos , Juicio/fisiología , Masculino , Memoria/fisiología , Estimulación Luminosa , Factores de Tiempo , Adulto Joven
18.
Cereb Cortex ; 27(10): 4815-4822, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27600845

RESUMEN

Alpha (8-12 Hz) power desynchronization is strongly associated to visual perception but has been observed in a large variety of tasks, indicating a general role in task anticipation. We previously reported in human observers that interference by repetitive transcranial magnetic stimulation (rTMS) of core regions of the dorsal attention network (DAN) disrupts both anticipatory alpha desynchronization and performance during a visuospatial attention (VSA) task. Here, we test the hypothesis that alpha desynchronization is task specific, and can be selectively modulated by interfering with activity in different higher-order parietal regions. We contrast the effects of rTMS on alpha rhythms and behavior on 2 different tasks: a VSA and a semantic decision task, by targeting the posterior intraparietal sulcus (pIPS), a core region of the DAN, or the angular gyrus (AG), a core region of the default mode network (DMN). We found that both performance and anticipatory alpha desynchronization were affected by stimulation of IPS only during VSA, and of AG only during semantic decisions. These findings indicate the existence of multiple dedicated parietal channels for the modulation of anticipatory alpha rhythms, which in turn reflect task-specific modulation of excitability in human parieto-occipital cortex.


Asunto(s)
Ritmo alfa/fisiología , Atención/fisiología , Lóbulo Parietal/fisiología , Mapeo Encefálico , Femenino , Lateralidad Funcional/fisiología , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Masculino , Lóbulo Occipital/fisiología , Estimulación Magnética Transcraneal/métodos , Percepción Visual/fisiología
19.
Curr Opin Neurol ; 29(6): 706-713, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27749394

RESUMEN

PURPOSE OF REVIEW: An important challenge in neurology is identifying the neural mechanisms underlying behavioral deficits after brain injury. Here, we review recent advances in understanding the effects of focal brain lesions on brain networks and behavior. RECENT FINDINGS: Neuroimaging studies indicate that the human brain is organized in large-scale resting state networks (RSNs) defined via functional connectivity, that is the temporal correlation of spontaneous activity between different areas. Prior studies showed that focal brain lesion induced behaviorally relevant changes of functional connectivity beyond the site of damage. Recent work indicates that across domains, functional connectivity changes largely conform to two patterns: a reduction in interhemispheric functional connectivity and an increase in intrahemispheric functional connectivity between networks that are normally anticorrelated, for example dorsal attention and default networks. Abnormal functional connectivity can exhibit a high degree of behavioral specificity such that deficits in a given behavioral domain are selectively related to functional connectivity of the corresponding RSN, but some functional connectivity changes allow prediction across domains. Finally, as behavioral recovery proceeds, the prestroke pattern of functional connectivity is restored. SUMMARY: Investigating changes in RSNs may shed light on the neural mechanisms underlying brain dysfunction after stroke. Therefore, resting state functional connectivity may represent an important tool for clinical diagnosis, tracking recovery and rehabilitation.


Asunto(s)
Encéfalo/fisiopatología , Red Nerviosa/fisiopatología , Accidente Cerebrovascular/fisiopatología , Atención/fisiología , Encéfalo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética/métodos , Red Nerviosa/diagnóstico por imagen , Neuroimagen , Accidente Cerebrovascular/diagnóstico por imagen
20.
Neuroimage ; 143: 250-255, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27591920

RESUMEN

The ability to learn and process visual stimuli more efficiently is important for survival. Previous neuroimaging studies have shown that perceptual learning on a shape identification task differently modulates activity in both frontal-parietal cortical regions and visual cortex (Sigman et al., 2005;Lewis et al., 2009). Specifically, fronto-parietal regions (i.e. intra parietal sulcus, pIPS) became less activated for trained as compared to untrained stimuli, while visual regions (i.e. V2d/V3 and LO) exhibited higher activation for familiar shape. Here, after the intensive training, we employed transcranial magnetic stimulation over both visual occipital and parietal regions, previously shown to be modulated, to investigate their causal role in learning the shape identification task. We report that interference with V2d/V3 and LO increased reaction times to learned stimuli as compared to pIPS and Sham control condition. Moreover, the impairment observed after stimulation over the two visual regions was positive correlated. These results strongly support the causal role of the visual network in the control of the perceptual learning.


Asunto(s)
Aprendizaje/fisiología , Reconocimiento Visual de Modelos/fisiología , Desempeño Psicomotor/fisiología , Estimulación Magnética Transcraneal/métodos , Corteza Visual/fisiología , Adulto , Femenino , Humanos , Masculino , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...